Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina.
نویسندگان
چکیده
Chronic retinal inflammation in the form of activated microglia and macrophages are implicated in the etiology of neurodegenerative diseases of the retina, including age-related macular degeneration, diabetic retinopathy, and glaucoma. However, molecular biomarkers and targeted therapies for immune cell activation in these disorders are currently lacking. To address this, we investigated the involvement and role of translocator protein (TSPO), a biomarker of microglial and astrocyte gliosis in brain degeneration, in the context of retinal inflammation. Here, we find that TSPO is acutely and specifically upregulated in retinal microglia in separate mouse models of retinal inflammation and injury. Concomitantly, its endogenous ligand, diazepam-binding inhibitor (DBI), is upregulated in the macroglia of the mouse retina such as astrocytes and Müller cells. In addition, we discover that TSPO-mediated signaling in microglia via DBI-derived ligands negatively regulates features of microglial activation, including reactive oxygen species production, TNF-α expression and secretion, and microglial proliferation. The inducibility and effects of DBI-TSPO signaling in the retina reveal a mechanism of coordinated macroglia-microglia interactions, the function of which is to limit the magnitude of inflammatory responses after their initiation, facilitating a return to baseline quiescence. Our results indicate that TSPO is a promising molecular marker for imaging inflammatory cell activation in the retina and highlight DBI-TSPO signaling as a potential target for immodulatory therapies.
منابع مشابه
Hemin Induces the Activation of NLRP3 Inflammasome in N9 Microglial Cells
Background: Hemin is an important sterile component that induces a neuroinflammatory response after intracerebral hemorrhage, in which NLRP3 inflammasome activation has also proved to be involved. Although microglial activation acts as a key contributor in the neuroinflammatory response, the relationship between hemin and NLRP3 in microglia remains poorly understood. Objective: To investigate w...
متن کاملFractalkine Signaling Attenuates Perivascular Clustering of Microglia and Fibrinogen Leakage during Systemic Inflammation in Mouse Models of Diabetic Retinopathy
Fractalkine (FKN) is a chemokine expressed constitutively by healthy neurons and signals to microglia upon interaction with the FKN receptor, CX3CR1. Signaling between FKN and CX3CR1 transduces inhibitory signals that ameliorate microglial activation and proinflammatory cytokine release in neuroinflammatory conditions. The aim of this study is to determine the mechanisms associated with microgl...
متن کامل[18F]GE-180 PET Detects Reduced Microglia Activation After LM11A-31 Therapy in a Mouse Model of Alzheimer's Disease
Microglial activation is a key pathological feature of Alzheimer's disease (AD). PET imaging of translocator protein 18 kDa (TSPO) is a strategy to detect microglial activation in vivo. Here we assessed flutriciclamide ([18F]GE-180), a new second-generation TSPO-PET radiotracer, for its ability to monitor response to LM11A-31, a novel AD therapeutic in clinical trials. AD mice displaying pathol...
متن کاملE 02 INF - β signaling and microglial activation in retinal degeneration
Microglial activation is a hallmark of human retinal degenerations including Retinitis Pigmentosa and Age-related Macular Degeneration (AMD) [1]. Genetic mouse models have shown that chronic alerted microglia trigger and perpetuate retinal degeneration leading to vision loss [2-3]. Immuno-regulatory microglia exist in the early activation phase but are overwhelmed by rapidly expanding pro-infla...
متن کاملMonascin ameliorate inflammation in the lipopolysaccharide-induced BV-2 microglial cells via suppressing the NF-κB/p65 pathway
Objective(s): The pathophysiology of neurodegenerative diseases is complicated, in which inflammatory reactions play a vital role. Microglia cells activation, an essential process of neuroinflammation, can produce neurotoxic molecules and neurotrophic factors, which aggravate inflammation and neuronal injury. Monascin, a major component of red yeast rice, is an azaphil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 34 10 شماره
صفحات -
تاریخ انتشار 2014